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Numerical simulation of White–Metzner fluid in a 4:1
contraction
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SUMMARY

A finite volume technique has been introduced in an attempt to simulate a viscoelastic flow. The steady
flow of a White–Metzner fluid through a 4:1 abrupt contraction has been chosen as a prototype example
because of the existence of previous simulations in the literature. The finite volume method (FVM) is
used to discretize the conservation and constitute equations with a Hybrid scheme with appropriate
treatment of source terms. The FVM is proven to be quite capable of handling numerically viscoelastic
models with low computational cost. Its use is recommended as a viable alternative to the solution of
viscoelastic problems using a variety of constitutive models. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For the past several years, numerical simulation of viscoelastic flows has been a powerful tool
for understanding the fluid behaviour in a variety of processes of both industrial and scientific
interest. Polymeric fluids, owing to their viscoelastic character, are of particular interest in
numerical simulations because of their wide applications in material processing and their
behaviour is different from that of Newtonian fluids in ways which are often complex and
striking. Although, there have been many successful numerical complexities that arise due to
the change of type, i.e. hyperbolic–elliptic or hyperbolic–parabolic. The earlier numerical
schemes, such as central finite differences [1–3], Galerkin finite elements [4] and spectral finite
elements [5], to solve the equations are unstable when the elasticity of the flow becomes
significant. While each of them has its advantages and disadvantages, the search for even
better and/or faster methods still continues. In that respect, it was inevitable that the FVM
should also be tried within the viscoelastic context. However, the viscoelastic simulations with
the FVM are very limited [12–16].
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Contraction flows of viscoelastic fluids are of importance in fundamental flow property
measurements as well as in many industrial applications involving moulding and extrusion
of polymer melts and solutions. They are also a challenging class of problems for analytical
and numerical work. Numerous theoretical studies have been devoted to the study of
viscoelastic fluids in contraction flow and there is a large literature on this subject; see, for
example, References [6,7]. However, the theoretical prediction of entry-flow for non-
Newtonian fluids remains a different task. The constitutive equation used to describe the
rheology of the polymer has fading memory effects, and may contain non-linear terms that
add to the complexity of the problem. The presence of a geometrical singularity poses
another major challenge to the numerical simulation of contraction flows.

Even though polymer melts and solutions are rheologically difficult to study in complex
flow geometries, many studies have been devoted to this topic. In particular, a large
number of articles on numerical studies of polymer solutions in contraction flows exist.
Maders et al. [8] used a decoupled finite element method to simulate the White–Metzner
fluid flow. They showed that no loss of evolution has been observed until a Weissenberg
number We=1.85. They conducted a numerical simulation for a 4:1 contraction flow for
comparison with the experimental results. They reported satisfactory agreement between
experiments and computations at low flow rates, even if the experimental first principal
stress difference relaxes more rapidly in the downstream region than the computed one. In
spite of the numerous works that have tried to compare theoretical and experimental
results, there is still a need for more extensive studies that examine all aspects of the flow
at different locations of the geometry, and establish a systematic comparison between
experimental and numerical calculations.

In this paper we conduct a numerical simulation of the planar contraction flow of
viscoelastic fluid (see Figure 1 for computational domain of the 4:1 contraction). Since the
nature of the rheological constitutive low used to describe the polymer solution will influ-
ence the predictions, we used the White–Metzner model, which generalizes many rheologi-
cal models.

Figure 1. Computational domain for contraction flow.
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2. GOVERNING EQUATIONS

For the two-dimensional flow of an incompressible viscoelastic fluid, the governing equations
are continuity, the x and y component momentum equations, and three component stress
equations from the constitutive equation. The solution of these equations, with appropriate
boundary conditions, gives u, 6, txx, tyy, txy, and the pressure p as functions of x and y. The
equations expressed below are in terms of dimensionless variables.
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2.1. Boundary conditions

The boundary conditions employed for the velocity and pressure are given below:

In inlet and outlet section fully developed Poiseuille flow is imposed
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The extra stress components are fixed along the inlet section. They correspond to a fully
developed flow of a White–Metzner fluid between parallel plates
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at the centreline we impose symmetry conditions

(u
(y

(x, 0)=0, 6(x, 0)=0

and adhesion at the wall:

u=0, 6=0

3. NUMERICAL METHOD

To solve the above coupled non-linear equations at moderate cost, the use of an iterative
numerical method has to be made. The mathematical analysis of these equations is studied by
Reference [9]. It has to be noticed that all of the governing equations can be written in the
form of general transport equation as follows

(
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where F is the working variable which can be a component of a vector or tensor and even a
constant. The coefficients L and G have different meanings for different equations, and SF is
called the source term, which includes all the terms that cannot be taken into account in the
convective and diffusion terms, and has different contents for different equations. These
variables are given in Table I. A simple finite volume formulation is used for the spatial
discretization. The flow domain is divided into a set of control volumes DV around P, with
bounding area A as shown in Figure 2.

Integrating Equation (1) over the control volume and using the divergence theorem, we have
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where S( F is the integral of the source term SF. This can be linearized as
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Table I. Variables.
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Figure 2. The control volume for grid point P.

S( F=
&

DV

SF dV=S( c+S( PFP

in which S( c is the part of the S( F that does not explicitly depend on F, and S( P is the coefficient
of FP that is made negative to enhance the numerical stability of the discretized equation
system (2), where an overbar means that the applied values are evaluated using the known
fields for iteration level n. By using a proper spatial variation approximation scheme, the final
discretized equations relating the FP to its neighbouring gridpoint values can be expressed
symbolically in a general form in every control volume
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where Dnb and Pe are the diffusion coefficient and the Peclet number respectively. sign(nb)=
+ when nb�{w, s} and sign(nb)= − when nb�{n, e}. The summation is to be taken over all
the neighbouring grid points nb of the central point P and the coefficients anb are the functions
of the working variable, and their structures depend both on the approximation scheme used
and the form of the cell. These coefficients determine the spatial accuracy of the final solution.
In our calculations, the Hybrid scheme by Patankar [10] is employed to solve the momentum
equations

f(�Pe �)=max(0, 1−0.5�Pe �)

while an Upwind scheme is used in the constitutive equations for the stresses

f(�Pe �)=1

In viscoelastic flows, the convective terms are too small in comparison with the source terms
and special treatment of the source term is needed. The computation of these terms requires
the first gradient of txx, tyy and txy. The term (txx/(x, as like as the other terms, is assuming
quadratic variation of txx along the x-direction. Thus, (txx/(x is written as 2ax+b.

3.1. Discretization of boundary conditions at the wall

The computation of the Neumann boundary conditions along the wall dramatically affects the
solution accuracy. Second-order accuracy for the primitive variables is necessary. In this
context, quadratic polynomials [17] are used to describe the velocity variations along the wall.
The appropriate source term in the u-equation is defined by

Su= (1−wr) ·A ·
�(u
(y
�

wall

(4)

The computation of ((u/(y)wall in this term is carried out assuming that u is a quadratic
function of y

u=ay2+by+c (5)
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(u
(y

=2ay+b (6)

3.2. Discretized constituti6e equations

The constitutive equations are hyperbolic and we use the upwind scheme, which is stable but
only ensures first-order spatial accuracy for stress. In order to attain second-order accuracy
and unconditional stability, an artificial diffusion term 9 · (z9t), with z being an artificial
diffusion coefficient introduced on both sides of the constitutive equation, and discretized in
the usual way. However, the current value is taken for t on the left-hand side, while the known
value, from a previous iteration level, for t is taken on the right-hand side. In this way, the
discretized constitutive equations taken the same form as Equation (3)
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where the superscripts ij refer to tensor components, reserving the subscripts to the gridpoints
and the overbar to values from level n. The constant part of the source term in which the stress
is approximated piecewise-constantly in each control volume takes the from
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3.3. Solution method

The discretized equations for each control volume in the computational domain consist of a set
of linear algebraic equations that can be solved easily by means of the line-by-line technique
based on the Thomas algorithm or the tridiagonal matrix algorithm (TDMA) developed in
Reference [10,11].

For viscoelastic fluid flow computations, the extra stress is non-linearly coupled via the
source term of the momentum equations. Here, decoupled techniques can be adopted in such
a way that the source term that contains the known dynamic fields obtained from the previous
iteration level and the stress are updated by solving the discretized constitutive equations for
obtaining the kinematics field from the momentum equations.

To obtain the kinematic fields, an equation for the pressure is obviously necessary because
it is also an unknown. The strategy of pressure correction is utilized to produce the pressure
equation, in which the continuity of the field is enforced via a pressure correction so that the
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resulting pressure relation, which couples the pressure and the velocities, replaces the continu-
ity relation, while the momentum equations retain their role for determining the velocity field.
To avoid physically unrealistic fields, such as the checkerboard velocity and pressure distribu-
tion, staggered control volumes to be used. As shown in Figure 3, for the P-centred control
volume for scalar fields, the velocities uk (k=x, y) are discretized using their values on the
faces normal to the k-direction; thus, the location of the control volume for uk in the
momentum equations is staggered only in k-direction relative to the control volume for the
fields (Figure 3).

The steps of present algorithm are:

*Computations of velocities.
*Computation of pressure and correction of velocities.
*Computation of stresses.
*Convergence control and return to first step if necessary.

4. NUMERICAL RESULTS

Three different meshes, depicted in Figures 4–6, have been tested in the numerical simulation.
Very thin cells were required around the re-entrant section to account for the large stresses that
developed in the vicinity of the corner. Table II gives the number of cells (NC), the total
number of nodes (NN) as well as the area of the cells adjacent to the re-entrant corner (Area)
for each grid. To test the convergence of the simulations with mesh refinement, we plot profiles
of the first normal stress difference (txx−tyy) along the centreline (Figure 7). It is clear that
when compared with Mesh 2 and Mesh 3, the coarsest grid Mesh 1 allows good convergence,
and we will limit the present simulations to this grid.

Figure 3. Two-dimensional staggered mesh and the control volumes for u, 6, p well as t.
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Figure 4. Mesh 1.

Figure 5. Mesh 2.

The flow along the centreline has an elongational nature and the elongational properties of
the rheological models play an important role in determining the way it responds to the
accelerating forces when it approaches the corner. Velocity profiles for Weissenberg number
We=1 are plotted in Figure 8. This figure shows an important velocity overshoot near the
corner. Marchal and Crochet [18] have also predicted similar velocity overshoots and high
stress peaks near the singular region in their high De calculation with Oldroyd-B fluid.

First normal stress difference profiles for different values of the Weissenberg number are
reproduced in Figure 9. The maximum of (txx−tyy) is reached just upstream of the entry
section. As We increases, the value of this maximum increases sharply.
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Figure 6. Mesh 3.

Table II. The number of cells (NC), number of nodes (NN) and area of the
cell adjacent to the re-entrant corner.

NN NC Area

Mesh 1 5075 4897 6.859E−04
7532Mesh 2 7314 3.562E−04
9118 8880 1.967E−04Mesh 3

Profiles of the normal extra stresses txx and txy are presented in Figure 10. This figure shows
a high txx and txy peak near the corner.

In Figures 10–12 we present the extra stresses txx and txy for different values of o ; we show
that the value of the peak of this variable increases as o decreases.

In Figure 13, the pressure streamlines distribution is shown for (Re, wr, o, We)= (0.01, 0.8,
0.5, 1), where the solution becomes more and more oscillatory near re-entrant corner as We
increases.

In Figure 14 we present distribution of txx and txy for (Re, wr, o, We)= (0.01, 0.8, 0.5, 1).
It is clear that the re-entrant corner represent a singularity, many lines pass a cross this point.

5. CONCLUSION

The planar 4:1 contraction flow of White–Metzner fluid has been simulated by utilizing a
finite volume method on a non-uniform staggered grid system. With the FVM, the velocity
and pressure fields are made to satisfy the same momentum equation at the end of each step,
and the pressure correctors are used to correct the velocity field only. To make the method

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 35: 559–573
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Figure 7. (zxx−zyy) on y=1 of the three different meshes.

Figure 8. U and V on y=0 and y=1 respectively.
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Figure 9. (zxx−zyy) on y=1 for We=0.8, 1 and 1.2.

Figure 10. zxx and zxy on y=1 respectively with o=0.3.
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Figure 11. zxx and zxy on y=1 respectively with o=0.5.

Figure 12. zxx and zxy on y=1 respectively with o=0.8.
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Figure 13. Isolines of pressure and streamlines respectively.

Figure 14. Isolines of zxx and zxy respectively.

suitable for viscoelastic flow computations, decoupled techniques are employed and artificial
diffusion terms are introduced on both sides of the discretized constitutive equations to
stabilize the numerical calculation. With the method, thanks to the modest demand on
memory, it becomes possible to solve large problems on small computer systems.

As a results, the present numerical simulation has allowed us to reproduce much of the
experimental results.
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